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I. INTRODUCTION

Important progress has been made in a recent series of
papers by Falk, Langer, and myself on the shear-
transformation-zone �STZ� theory of plastic deformation in
amorphous solids �1,2�. In the first paper in this series, we
introduced and explored an energetic approach to the STZ
theory at temperatures far below glass transition temperature,
which helped us to define the limits of the theory’s form. The
finite-temperature version of the theory developed in the sec-
ond paper �2� allowed us to make predictions that were com-
parable to to experimental observations of the behavior of
bulk metallic glasses �Kato et al. �3�, Lu et al. �4��. The
success and the questions that these studies posed prompt us
to look more carefully at the fundamentals of the theory and
understand the extent to which the simple approximations
that we used were correct, and how to construct the theory
without them. This paper is focused on further generalizing
and expanding the low-temperature STZ theory of plasticity.
In particular, we reexamine the physical significance of two
parameters that occurred in the energy balance equations in-
troduced in Ref. �1�, and we show explicitly how to derive
the tensorial version of the theory, already used in Ref. �5�,
that is needed in order to describe situations in which the
orientation of the stress changes as a function of position and
time. Finally, for completeness, we derive a full set of elasto-
plastic continuum equations of motion for this class of mod-
els.

The STZ theory of plasticity of amorphous materials at
low temperatures was proposed by Falk and Langer in Ref.
�6�. It is based on the previous works of Cohen, Turnbull,
Spaepen, and Argon �7–9�, which argued that noncrystalline
solids plasticity is due to atomic rearrangements at localized
sites. This picture has also been confirmed by a number of
computational studies �10–13�. However, unlike the earlier
theories, the STZ theory focuses in detail on how rearrange-
ments at the localized sites �shear-transformation zones� oc-
cur, and identifies as important dynamical variables not only
the concentration of the STZs, but also their orientations.
This new variable immediately allowed one to obtain a de-
scription of elastic and plastic behavior as an exchange of
stability between the two steady states. Such a simple math-
ematical treatment appears to us to be much more natural
than the approach of traditional plasticity theory with its
yield criteria.

Moreover, the original STZ theory offered an explanation
of a wide class of plasticity phenomena such as work hard-
ening, strain softening, the Bauschinger effect, and others.
But, as pointed out in Ref. �6�, it had an inconsistency which
implied that the proposed form was not completely correct.
The energetic approach introduced in Ref. �1� allowed one to
correct the inconsistency for a simple case of quasilinear
approximation. As shown there, even in such a simple form
the STZ theory captured the important features observed in
both mechanical tests and calorimetric measurements of
glassy polymers at temperatures far below glass transition
temperature �14�. A generalization of such an approach �also
for the quasilinear approximation� to higher temperatures �2�
has proven to be quantitatively successful in the description
of the viscoelastic response of bulk metallic glasses under
tensile loading �3,4�. However, as argued in Refs. �1,2,15�,
the application of quasilinear theory is limited. Most notably,
the quasilinear approximation exaggerates plastic flow at
small stresses and low temperatures, and reduces memory
effects. As only the nonlinear STZ theory can be expected to
adequately describe molecular rearrangements, it must be
further developed in order to reach precise quantitative
agreement with experiment. One of the purposes of this pa-
per is to expand the energetic approach introduced in Ref. �1�
to the nonlinear STZ theory.

A major challenge in developing the STZ theory was de-
fining the form of the STZ creation and annihilation rates. In
the original paper �6� these rates were proposed to be pro-
portional to the rate of plastic work ��̇pl. Since this work can
become negative, it was obvious that this form was not ac-
ceptable �the inconsistency noted above�. An easy �but arti-
ficial� remedy was proposed in Ref. �5�—to make them pro-
portional to the absolute value ���̇pl�. This was sufficient for
handling complicated numerical simulations of necking
where ��̇pl becomes negative during unloading. These simu-
lations also explicitly demonstrated that thinning of the neck
could continue even after stretching of the sample had been
stopped. This raised a question whether the proposed forms
of the STZ theory agreed with fundamental physical
principles—the first and second laws of thermodynamics. It
appeared that, indeed, they did—the plastic deformation of
the neck was driven by the energy stored in the bulk of
material, and this process was dissipative.

Beyond that, the involvement of energy concepts in the
consideration of the theory opened a different perspective. In
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this paper we make a conjecture that will be the basis of all
of the following discussion—that creation and annihilation
rates are proportional to the rate of energy dissipation. This
conjecture of proportionality allows us to self-consistently
define all components of the theory �Sec. II�. The formalism
developed there is a useful tool in limiting the arbitrariness
of possible forms of the dynamical equations, transcending
the current framework of low-temperature STZ theory. In
Sec. III we demonstrate conclusions of Sec. II on two impor-
tant examples.

Another significant limitation of the original STZ theory
was that it considered STZs oriented in a single direction
only. In earlier studies that had to deal with stress changing
its direction �5,16–18�, the form of the theory for amorphous
material, isotropic in its nature, had to be guessed on a phe-
nomenological basis. In Sec. IV of this paper, we return to
the microscopic basics and construct a theory that includes
STZs oriented in all possible directions. Thereafter, we intro-
duce an approximation that allows us to rewrite the theory in
a simpler tensorial form, with order parameters being the
first and second moments of the orientational density of the
STZs. This tensorial form is comparable to the above-
mentioned phenomenological theory.

In Sec. V we combine ideas of the previous sections, ap-
plying the energetic approach from Sec. II to the isotropic
model of STZ theory from Sec. IV.

An understanding of energetic processes in the plastic de-
grees of freedom allows us to deal more carefully with spa-
tially distributed systems, which we discuss in Sec. VI. Here,
we put all of the ingredients together and write dynamical
equations for an elasto-plastic material in two dimensions,
preserving a clear picture of energy balance.

In Sec. VII we present some arguments in favor of our
conjecture of proportionality between the rate of creation and
annihilation of STZs and the rate of energy dissipation. We
also discuss some details that have been left out so far, but
still may be important to obtain quantitative agreement with
experiment.

Before proceeding, let us discuss the methodology of the
STZ approach. The STZ theory, being a mean-field theory,
describes structure, disorder, and deformation processes in
material in terms of coarse-grained internal variables—the
density of STZs and orientational order parameter �as oppo-
site to atomic stress fields, rapidly changing on atomic scale,
of molecular dynamics simulations and theoretical simula-
tional models with space-distributed elements, as in the
Bulatov-Argon model �19��. Deformation and behavior of
amorphous material is a collective phenomenon, and simi-
larly to other areas of physics, these internal variables are
introduced to describe in a simpler language how amorphous
solids behave. As such, STZs represent a simplified measure
of the distribution of stress thresholds resisting transitions,
and how this distribution evolves under applied load. Strong
short-range interactions between individual atoms and long-
range elastic fields are expressed to some extent in a concise
form of internal variables. At the fundamental level, how-
ever, the dynamics of deformation is determined by the equa-
tions of motion of individual atoms, energy landscape and
barriers for atoms to slide over its neighbors. Determining
systematically the exact connection to the most relevant col-

lective variables is an enormous task. A more practical ap-
proach is to introduce coarse-grained internal variables and
to write dynamical equations which reflect as closely as pos-
sible the physics of the problem, and which satisfy the basic
physical principles, as the STZ theory does.

II. ENERGY CONCEPTS IN THE STZ THEORY OF
PLASTICITY

The basic premise of the STZ theory is that the process of
plastic deformation in an amorphous material is due to non-
affine rearrangements of its particles in certain regions,
which are called shear transformation zones. The original
STZ theory simplistically considered all STZs as oriented in
a single preferred direction. A two-dimensional sample was
subjected to pure shear loading with a principal axis of the
deviatoric stress tensor coinciding with the preferred direc-
tion. Throughout this section we will adhere to the same
propositions.

To be specific, we will call the zones elongated along the
y axis “+” zones and the zones elongated along the x axis
“−” zones. We will denote the density of zones in the “+”
state by n+, and in the “−” state by n−. For pure shear the
deviatoric stress tensor has the form sxx=−s, syy =s, sxy =0.

Following Ref. �6�, we can think of the plastic strain rate
as the result of transitions between the states of STZs

�̇pl = �v�R−n− − R+n+� , �2.1�

where �̇pl is the yy component of the plastic strain rate ten-
sor, R+ is the rate of transitions from “+” to “−” states, R− is
the rate of transitions from “−” to “+” states, � is the elemen-
tary increment of the shear strain, and v is a volume of the
order of the STZ volume. Generally, transition rates are func-
tions of stress s or, equivalently, of the dimensionless vari-
able s / �̄, where �̄ can be interpreted as a sensitivity modu-
lus �6�. This modulus has dimension of stress or energy
density. Equation �2.1� also implies that all STZs are the
same size, and therefore the constants � and v are the same
for all zones.

We suppose that STZs can also be annihilated and cre-
ated, with the annihilation rate Ra and creation rate Rc. The
creation rate, unlike transition and annihilation rates, can be
understood only as a quantity defined per unit volume. Thus,
we have

ṅ± = R�n� − R±n± − Ran± + Rc. �2.2�

We can rewrite Eqs. �2.1� and �2.2� in a more convenient
form. If we introduce a parameter �0 that specifies some time
scale for transitions, and define rate functions S=�0�R−

−R+� /2, C=�0�R−+R+� /2, T=S /C, �=�0Ra, densities n	

=2Rc /Ra, ntot=n++n−, n
=n+−n−, and dimensionless quan-
tity �0=�vn	, we get

�0ṅ
 =
2n	�0

�0
�̇pl − �n
, �2.3�

�0ṅtot = ��n	 − ntot� , �2.4�
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�0�̇pl =
�0C
n	

�Tntot − n
� . �2.5�

This system of equations is completely determined if we
define the functions R± ,Ra, and Rc, which was done in Ref.
�6�. In this paper we will postpone choosing specific forms of
the transition rates and corresponding functions C ,S, and
first focus on the creation and annihilation rates.

From �2.2� we see that an important feature of this theory
is that creation and annihilation of STZs are independent of
their orientations and occur with equal probability for both
orientations. This is not a completely trivial assumption. We
disregard the possibility that creation and particularly anni-
hilation can happen in connection with transition processes,
and thus be more intense for one orientation of STZs than the
other. However, the assumption that the creation and annihi-
lation rates are independent of orientation is simple and plau-
sible. Another observation we can make is that the creation
rate is very likely to depend on the structure of material, or in
other words, on such characteristics as packing fraction, free
volume, or structural disorder, as this rate is not only a dy-
namical, but also a structural property. This is also expressed
in the fact that we can define it per volume of material, but
not per STZ. On the other hand, the annihilation rate, as well
as the transition rates, is less likely to depend on the structure
of material. This is expressed in the fact that they can be
defined as rates per STZ, and can be thought of as properties
of STZs, but not the surrounding material, the influence of
which on individual STZs can be described by averaged
quantities, such as average stress. In further discussion we
will assume that changes in the structure of material can be
described by changes in STZ degrees of freedom only. Thus,
our only internal dynamical variables are ntot and n
, while
n	 is assumed to be a constant.

It was proposed in Ref. �6� to make the rates of creation
and annihilation proportional to the rate of plastic work
2s�̇pl. A peculiarity of this expression mentioned earlier is
that these rates, by definition always positive quantities, can
become negative. This happens because plastic work does
not entirely dissipate.

In general, the rate of plastic work done on a system can
be represented in the form

2s�̇pl =
d�

dt
+ Q , �2.6�

where � is the energy that is stored in the plastic degrees of
freedom and in principle can be recovered, and Q is the
dissipation rate—a non-negative function of stresses and in-
ternal variables.

As annihilation and creation rates themselves are non-
negative, we propose to make them proportional to the rate
of dissipation Q. We will give some reasons why this pro-
portionality can be true in Sec. VII, but at the moment this
proposition should be viewed as a conjecture that provides a
physically sensible model and adequately describes mechani-
cal and thermodynamical phenomena in amorphous solids.

Now, we are in a position to derive formulas for Q ,Ra,
and Rc. We write Q=ARa=A� /�0, where A is a coefficient

determining the proportion in which dissipated energy drives
creation and annihilation rates. Generally, this coefficient can
be a function of total STZ density ntot, but not n
, meaning
that dissipation produces creations and annihilations of STZs
independently of their average orientation already present in
the sample. Later, we will refine our conjecture and postulate
that the annihilation and creation rates are proportional to the
rate of energy dissipation not simply per volume, but per
STZ. Thus, the coefficient A will be proportional to ntot. As
the energy � depends only on the internal variables n
 and
ntot, we have

d�

dt
=

��

�n


ṅ
 +
��

�ntot
ṅtot. �2.7�

Then, using �2.3�–�2.5�, we derive from �2.6�

� =
2�0�̇pl�s −

n	

�0

��
�n


�
A − n


��
�n


+ �n	 − ntot�
��

�ntot

. �2.8�

In �2.8� we must choose � in such a way that � is always
non-negative. If we look at � as a function of s, we conclude
that both the numerator and the denominator must always be
positive independently. The numerator is guaranteed to be
positive if its two factors always become zero simulta-
neously, that is at s0= �̄T −1�n
 /ntot�, where T is assumed to
be monotonic, and T−1 is the inverse function of T. This
gives

��

�n


=
�0�̄

n	

T −1�n
/ntot� . �2.9�

From �2.9�, it follows that � as a function of n
 is defined
uniquely. If we suppose that the energy � must be extensive
in ntot, we get

� = �0�̄
ntot

n	
�P� n


ntot
� + 
	 , �2.10�

where P���=
0
�T −1�x�dx and 
 is a constant. The term pro-

portional to 
 plays an interesting role here. It determines
how much energy is stored in the material due to the pres-
ence of the STZs. This energy can be recovered if the sample
is annealed and thus the number of STZs is reduced. How-
ever, in the low-temperature theory we do not have any way
to reduce the density of STZs if it is less than n	 �see Eq.
�2.4��. Therefore, if we are conducting mechanical tests only,
this part of the energy appears to be dissipative, although in
general it is not.

Now, we refine our conjecture and postulate that the an-
nihilation and creation rates are proportional to the dissipa-
tion rate per STZ. We can rewrite our equations in a simpler
form by defining �=ntot /n	, 
=n
 /n	, A=a�0�̄ntot /n	, �
=� /�0�̄, s̃=s / �̄. Equations �2.3�–�2.5�, �2.8�, and �2.10�
then give

�0
̇ = 2C�s̃��T�s̃�� − 
� − �
 , �2.11�

�0�̇ = ��1 − �� , �2.12�

�0�̇pl = �0C�s̃���T�s̃� − 
� , �2.13�
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� =
2C�s̃���T�s̃� − 
��s̃ − T −1�
/���

M��,
�
, �2.14�

� = ��P�
/�� + 
� , �2.15�

where the denominator of � is

M��,
� = a� −



�
T −1�


�
� + �1 − ���P�


�
� + 
	 .

�2.16�

In earlier papers �1,2�, where we used the quasilinear ap-
proximation, we chose a=1 and 
=1/2. But, these param-
eters have a physical significance and we will later study
how their choice influences the behavior of material.

Let us now look at the locus of the equilibrium points 
̇
=0 in the s̃-
 plane �see Fig. 1�. The importance of these
points is due to the fact that they determine the two states of
the system—jammed and flowing. The line s̃=T −1�
 /�� is
the locus of jammed states; here, �̇pl=0. The other solution,
s̃=T −1�
 /��+M�� ,
� /
, is the locus of flowing states,
where �̇pl is nonzero. Note the role that � is playing here. Its
equilibrium value is equal to 1. Accordingly, the lines plotted
for ��1 are not true equilibrium branches. We will call
them quasiequilibrium, as they change when � relaxes to 1.

The jammed and flowing branches can intersect only at
the point where M�� ,
�=0. The dissipation rate also di-
verges at this point. In general, the value of the variable m
=
 /� at this point is a function of �; we will denote it as

m�. Because of the divergence in �, the dynamics of Eq.
�2.11� is such that m is always less than m�. Thus, the value
of m� determines the maximum number of STZs that may
flip in one direction; we will call it the saturation point.

The function m� depends on the parameters a and 
. Let
us look at how their choice influences function’s behavior.
From Eq. �2.16� we find that, when �=0, m�=m0 is the
solution of the equation 
=m0T −1�m0�− P�m0�, and when
�=1, m�=m1 is the solution of the equation a=m1T −1�m1�.
What happens if a=a
�m0T −1�m0�, so that m1=m0? We can
check that in this case M�� ,
� vanishes for any �, if m
=m0, meaning that m��m0. Thus, we can formulate an im-
portant property of Eq. �2.16�: for any 
 there is an a=a


such that m� is independent of �. The behavior of the func-
tion m� is also simple if a differs from a
. We can prove that
if a�a
, the function m� is monotonically increasing, and if
a�a
, m� is monotonically decreasing.

To illustrate different choices of parameters a and 
, in
Fig. 1 we show plots of 
=�m� as functions of s̃
=T −1�m��, obtained by varying �, for fixed a and three dif-
ferent values of 
. We will call such curves m� lines; each of
them is the locus of intersection points of the quasiequilib-
rium jammed and flowing branches, when � varies. As the
value of a is fixed, steady-state branches coincide for differ-
ent 
 when �=1. Of the three values of 
, the intermediate
value is such that a
 is equal to the given value of a.

In an elasto-plastic material the total strain rate is given
by

�̇tot = �̇pl + ṡ/2� , �2.17�

where � is the shear modulus �see also Eq. �6.9� and the
discussion thereof�. Let us consider solutions of the system
�2.11�–�2.13� and �2.17� at a constant strain rate �̇tot. If the
strain rate is small, the m� lines coincide with the dynamical
trajectories in the regime when � is evolving from some
initial value �0 towards unity. In other words, the dynamical
trajectory in the s̃-
 plane first moves along the quasiequi-
librium jammed branch calculated for �=�0 �line 7� until
the intersection with the m� line and then moves along the
m� line �for example, along line 4 for the smallest 
�. For
higher strain rates the dynamical trajectories tend to lie to the
right of the quasiequilibrium jammed branch and the corre-
sponding m� line and evolve from zero to some point on the
flowing branch at �=1, determined by the value of �̇tot. The
final value of s̃ can be smaller than intermediate values, thus
producing a stress overshoot. As we can see from Fig. 1, a
stress overshoot is more likely to happen for large values of

. For small values of 
 the stress increase is usually mono-
tonic.

It is hard to find compelling reasons why in a glassy ma-
terial the saturation value m� should be dependent on �.
Therefore, we will suppose that for glasses a=a
. Indeed,
this assumption produces behavior typical for glasses, such
as essential strain rate dependence and stress overshoot. Fur-
ther, we will also study a case when m� is dependent on �.
This case may be relevant for description of polycrystals,
clays, or soils, if deformation in such systems is due mostly
to rearrangement of individual crystals or grains, rather than

FIG. 1. General s̃-
 diagram. Here, it is plotted for specific
parameters of quasilinear model �Sec. III A�, but the diagram’s to-
pology is the same for the general case. The thick solid lines show
two steady states—jammed�1� and flowing�2�. The arrows show
regions where 
 increases or decreases, which is determined by the

sign of 
̇ from Eq. �2.11�. The thick dashed line�3� shows the satu-
ration value of 
, when �=1. The three thin dashed and dash-
dotted lines�4–6� are the m� lines for fixed a and the three different
values of 
. The thin solid lines�7–10� show quasiequilibrium
branches for those three values of 
 at some initial value of �.
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deformation of grains themselves. The difference from
glasses, to which we particularly wish to refer here, is the
presence of an additional means of energy dissipation due to
friction between constituent particles, which we will model
with a larger dissipation coefficient, that is, with a�a
.

Now, to make the discussion clear and to put our previous
works into the current more general framework, we consider
the simple case of what we call the quasilinear version of the
STZ theory. Such an analysis was presented in much detail in
Ref. �1�, albeit only with a=a
.

III. EXAMPLES

A. Quasilinear theory

In the quasilinear theory the transition rate functions are
supposed to be linear functions of the shear stress s. Namely,
we assume that C�s̃�=1, S�s̃�= s̃, so that T�s̃�= s̃, T −1���=�,
P���=�2 /2. From �2.15� we get

� = ��m2/2 + 
� , �3.1�

where m=
 /�. The expression �2.16� for M becomes

M��,m� = ��a − 
� + 
 − �� + 1�m2/2. �3.2�

We find that m�
2 =2�a−
+ �2
−a� / ��+1�� and a
=2
.

In Ref. �1�, we chose a=2
=1, so that �m��=1. Then, Eq.
�2.14� becomes

� =
4���s̃ − 
�2

�1 + ����2 − 
2�
. �3.3�

Using Eq. �3.3� in the dynamic equations �2.11�–�2.13� we
find that nonflowing steady states occur at s̃=
 /��1 and
flowing steady states at s̃= �1+�� / �2
�− �1−��
 / �2�2�
�1. The exchange of stability occurs at s̃=1. This value can
be naturally associated with the yield stress.

We solve Eqs. �2.11�–�2.13� and �2.17� numerically at the
constant strain rate and show the results in Figs. 2�a� and
2�b�. We plot s̃-
 trajectories and stress-strain curves for
three initial values of �. When the initial number of STZs is
small—the sample is annealed—a pronounced stress over-
shoot is observed. For quenched samples, that is, when the
initial value of � is large, the stress overshoot disappears. As
shown in Ref. �1�, the constant strain rate simulations of this
model are qualitatively similar to the available experimental
data �14�.

Now, we shall consider other choices of constants a and

. One artificial difficulty with the quasilinear approximation
is that some choices of these constants lead to m� larger than
unity, thus allowing m to assume nonphysical values. To sat-
isfy the condition �m��1, additional conditions must be im-
posed on the acceptable values of a and 
. There are two
regions for parameters a and 
, where �m��1 for all �: �1�
when 
�1/2 and 
�a�2
; here, a�a
; and �2� when a
−
�1/2 and 2
�a; here, a�a
.

In Figs. 2�c� and 2�d� we plot the results of simulation for
a=1/2, 
=1/20, that is, when they are in the second region.
The strain rate is small; thus, the steady state on the s̃-

diagram almost coincides with the intersection of two
steady-state branches, and, as discussed in Sec. II, the dy-
namical trajectory follows along the quasiequilibrium
jammed branch and then along the m� line. The stress-strain
curve shows gradual development of the plastic flow without
exhibiting stress overshoot. Because such a strain-rate curve
exists in the limit of an infinitely small strain rate, it can be
rate independent for many decades on the logarithmic scale.
During the development of the plastic flow almost all the
energy goes to creating more STZs. As we already noted, we
cannot get this energy back in mechanical tests, so in this
sense, such a regime can be considered to be dissipative.

FIG. 2. Quasilinear model. s̃-
 and stress-
strain diagrams for two cases: a=a
, so that m� is
constant �panels �a�, �b��, and a�a
, so that m�

is monotonically increasing �panels �c�, �d��.
Lines 1, 2 are the jammed and flowing steady-
state branches at �=1, line 3 is the m�-line. Pan-
els �a�, �c� show dynamical trajectories for the
stress-strain curves from panels �b�, �d�,
respectively.
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B. Nonlinear STZ model

The quasilinear model is very useful as a toy model be-
cause of its simplicity. It allows us to proceed much further
in analytical and, often, numerical calculations. But, it is
mainly useful only to gain qualitative insight into the under-
lying dynamics, not to look for quantitative predictions. The
most important drawback of the quasilinear model is its ex-
aggeration of plasticity at small stresses. This drawback can
be traced to the form of function C�s̃� which is constant in the
quasilinear approximation, but in reality is vanishingly small
at small stresses. This property is also responsible for sup-
pressing the dynamics of 
 at small stresses and, thus, for
memory effects.

The general derivation of Sec. II suggests that the ener-
getic approach to the fully nonlinear model will give quali-
tatively the same results as those of the quasilinear model,
while fixing inaccuracies of the latter. In this section we
briefly illustrate this point.

In a full STZ model C and S can be arbitrary nonlinear
functions of shear stress. The important fact to note is that,
unlike what is assumed in the quasilinear approximation, the
function �T�s̃��= ��R−−R+� / �R++R−�� is always less than
unity, and asymptotically approaches it when s→	. This
causes the function �T −1�m�� to diverge when �m� approaches
unity. Thus, when the denominator �2.16� vanishes, the value
of �m�= �
 /�� is always less than unity. It cannot exceed
unity at any values of parameters a and 
, but it also cannot
be equal to 1. Value of m equal to 1 corresponds to the
complete saturation—the case when all STZs are oriented in
one direction. It is puzzling that the nonlinear theory does
not allow this. But, we will see in Sec. V that this is what
must happen if we take into consideration that in amorphous
materials the STZs are oriented arbitrarily.

Next, to proceed with numerical calculations we make a
particular choice of functions R+ and R−. We will assume that

functions R± have the form offered in Ref. �6�, that is R±
=exp�−� exp�±s̃�
 /�0, where �=V* /v f, v f is the average free
volume, and V* is of order of the average molecular volume.
So, we find that

C�s̃� = exp�− � cosh s̃�cosh�� sinh s̃� ,

S�s̃� = exp�− � cosh s̃�sinh�� sinh s̃� ,

T�s̃� = tanh�� sinh s̃� . �3.4�

Now, we can find that the function T −1�m�
=arcsinh�arctanh�m� /��. It diverges logarithmically at m
→ ±1, but the function P�m� and consequently the plastic
energy � given by �2.15� are finite at �m�=1.

For the numerical simulations at a constant strain rate
loading we used the parameter �=6. In Figs. 3�a� and 3�b�,
we have m��0.992=const, which is obtained with a
=0.444, 
=1/3. The stress rate is large, so that the equilib-
rium point on the flowing branch �2� is far from the intersec-
tion of the jammed �1� and the flowing �2� lines. As in Figs.
2�a� and 2�c�, we demonstrate the results for three different
values of �0. In Figs. 3�c� and 3�d�, we chose a=0.444, 

=1/15, so that the m� line is monotonically increasing. The
strain rate is chosen to be small so the steady-state point
almost coincides with the intersection of the jammed and
flowing branches. Note that analytically we can calculate
very little in the fully nonlinear model, and even the numeri-
cal solution requires not simply solving the system of differ-
ential equations, but also numerically calculating the integral
P�m� at every step. But, the analysis from Sec. II predicts
much of the solution’s behavior just from knowing how the
function m� behaves based on the numerical values of a and

FIG. 3. Nonlinear model. s̃-
 and stress-strain
diagrams for two cases: a=a
, so that m� is con-
stant �panels �a�, �b��, and a�a
, so that m� is
monotonically increasing �panels �c�, �d��. Lines
1, 2 are the jammed and flowing steady-state
branches at �=1, line 3 is the m� line. Panels �a�,
�c� show dynamical trajectories for the stress-
strain curves from panels �b�, �d�, respectively.
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. We see that the plots in Fig. 3 are very similar to the plots
in Fig. 2 for the quasilinear model, since the s̃-
 diagrams
are topologically the same.

IV. ISOTROPIC STZ MODEL OF PLASTICITY

In this section we generalize the STZ model of plasticity
to the case of arbitrary spatial orientations of STZs and arbi-
trary orientations of the stress. An attempt to make such a
generalization starting from microscopic basics was made by
Falk �16�, but was not quite complete.

Here again, we will consider a two-dimensional homoge-
neous sample under a pure shear. To be specific, we will
classify STZs in relation to the direction of the x- and y axes.
We will specify that an STZ is in the “+” state if the angle
between the direction of its elongation and the y axis is
smaller than � /4; when the same is true with respect to the x
axis, we will say that the STZ is in the “−” state �see Fig. 4�.
Note, we suppose that the “+” and “−” orientations of the
zone are perpendicular to each other. Deviations from a right
angle should be described as fluctuations beyond the mean-
field theory, and therefore will not be considered here. We
write the pure shear in the form sij = s̄dij

�, where � is the
direction of the principal axis of the stress tensor, s̄
=�sijsij /2, and

dij
� = 2êi

�êj
� − �ij . �4.1�

In the above equation êi
� is a unit vector in the direction �,

so that dxx
� =−dyy

� =cos 2� and dxy
� =dyx

� =sin 2�. We measure
the angle � in the counterclockwise direction relative to the
x axis. For the purposes of this section we could have chosen
the principal axes of the stress tensor to be oriented along the
x- and y axes, but as we will further want to generalize this
discussion for the case of arbitrary temporal evolution of the
stress, we suppose that � is arbitrary.

Then, we suppose that only the diagonal component of the
shear stress tensor in the direction of the zone orientation
�the projection of the shear stress tensor on that direction� is
important for the dynamics of transitions between the states
of this zone. Thus, for the dynamics of the STZ population
we write

�̇�
+ = R−�s����

− − R+�s����
+ − Ra��

+ + Rc, �4.2�

�̇�
− = R+�s����

+ − R−�s����
− − Ra��

− + Rc, �4.3�

where ��
± is the density of STZs in the “+” and/or “−” state

oriented at an angle � relative to the x axis, and s�= s̄dxx
�−� is

the projection of the shear stress tensor on the direction �. At
this moment the density ��

± is defined for angles from −� /4
to � /4. Note that all STZs are included in this range due to
the circular symmetry.

Now, we note that our classification of zones as “+” and
“−” depends on the choice of the direction of x- and y axes,
which is arbitrary. If one zone is in the “+” state in relation to
a particular direction, then it is in the “−” state in relation to
the perpendicular direction, that is, ��+�/2

± =��
�. Our dynami-

cal equations should not depend on such arbitrariness; they
should give the same results independently of a reference
direction. Therefore, Eq. �4.3� for the angle �±� /2 must be
the same as Eq. �4.2� for the angle �, and vice versa. Thus,
we conclude that the following relation for transition rates
must hold:

R+�s�� = R−�− s�� . �4.4�

We suppose that transitions do not change the volume of
material. Thus, we must describe the elementary change in
strain by a traceless tensor, which in two dimensions is pro-
portional to dij

�. Again, we suppose that the magnitude of this
elementary change is always the same, only its orientation
can be different. In analogy with Sec. II, we have

�̇ij
pl = �v�

−�/4

�/4

dij
��R+�s����

+ − R−�s����
−�d� . �4.5�

The region of integration in �4.5� is chosen to count every
STZ only once. However, from the symmetry for the angles
� and �+� /2, we conclude that the same integral is correct
with any limits of integration in the form �−� /4+� ,� /4
+��.

As in Sec. II, we can introduce rate functions S=�0�R−

−R+� /2, C=�0�R++R−� /2, T=S /C, �=�0Ra, and also densi-
ties ��

tot=��
+ +��

−, ��

=��

+ −��
−, �	�n	=2Rc /Ra, where, as

earlier, tilde means stress rescaled by �̄, that is s̃�=s� / �̄,

s̃ij =sij / �̄, s̃̄= s̄ / �̄. These functions also have symmetry prop-
erties: S�s̃��=−S�s̃�+�/2�, C�s̃��=C�s̃�+�/2�, T�s̃��=−T�s̃�+�/2�,
and ��

tot=��+�/2
tot , ��


=−��+�/2

 . Using these variables, we can

rewrite Eqs. �4.2�, �4.3�, and �4.5� as

�0�̇ij
pl =

�0

�	
�

−�/4

�/4

dij
�C�s̃���T�s̃����

tot − ��

�d� , �4.6�

�0�̇�

 = 2C�s̃���T�s̃����

tot − ��

� − ���


, �4.7�

�0�̇�
tot = ���	 − ��

tot� . �4.8�

These equations are analogs of Eqs. �2.3�–�2.5�, but with
arbitrary orientations of STZs. Instead of the number of
STZs in two different states their variables are the densities
of STZs with different orientations. As it is hard to deal with
such equations, where �� essentially plays the role of a dis-
tribution function, we further show that these equations can
be simplified under sufficiently relaxed assumptions, and in-

FIG. 4. Classification of STZs as being in “+” or “−” states.
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stead of the density �� we can introduce its moments—scalar
and tensor variables.

Instead of the angular density ��
tot, we can introduce the

total density of zones in a sample ntot= �2/��
−�/4
�/4 ��

totd�, the
equation for which is easy to get by integrating Eq. �4.8�.
Instead of ��


, we introduce the tensor nij =
−�/4
�/4 dij

���

d�. To

get dynamical equations for nij
�, we multiply Eq. �4.7� by dij

�

and integrate it over �

�0ṅij = 2�
−�/4

�/4

dij
�C�s̃���T�s̃����

tot − ��

�d� − �nij . �4.9�

An assumption we will make here is that initially ��
tot does

not depend on �. Then, according to Eq. �4.8� ��
tot is inde-

pendent of � at all later times. Next, in the integral �4.9� we

will approximate the function C�s̃�� by a function C�s̃̄� that
depends not on the projection of the shear stress tensor on a
given direction, but on the principal value of the shear stress
s̄. The only role that the function C played in the original
paper �6� was to be responsible for memory effects. It was a
vanishingly small function for small stresses, and thus effec-
tively froze the internal variables in an unloaded sample,
preserving information about the previous loading. Our ap-
proximation keeps such dynamics intact. Now, the integral in
Eq. �4.9� can be calculated. Together with Eqs. �4.6� and
�4.8�, our system becomes

�0�̇ij
pl =

�0

n	

C�s̃̄��T�s̃̄�
sij

s̄
ntot − nij� , �4.10�

�0ṅij = 2C�s̃̄��T�s̃̄�
sij

s̄
ntot − nij� − �nij , �4.11�

�0ṅtot = ��n	 − ntot� , �4.12�

where we denoted

T�s̃̄� = �
−�/4

�/4

d�T�s̃̄ cos 2��cos 2� . �4.13�

In the derivation of this system, we used the previously dis-
cussed property that we can change the region of integration

to any quadrant. In more detail, the integrals in �4.6� and
�4.9� had been calculated as follows:

�
−�/4

�/4

dij
�T�s̃��d� = �

−�/4

�/4

dij
�T�s̃̄ cos 2�� − ���d�

= �
−�/4

�/4

dij
�−�T�s̃̄ cos 2��d�

= dij
��

−�/4

�/4

cos 2� T�s̃̄ cos 2��d� ,

where dij
� is equal to sij / s̄.

Equations �4.10�–�4.12� give the description of plasticity
in the isotropic generalization of the STZ theory.

V. THE PROPORTIONALITY HYPOTHESIS FOR THE
ISOTROPIC STZ MODEL

We now show how to expand the results of Sec. II for the
isotropic case. Again, as we will want to generalize results of
this section for the case of arbitrary temporal evolution of the
stress, we suppose that the principal axes of the tensor sij do
not necessarily coincide with the principal axes of the tensor
nij. We write the plastic work done on a system as

�̇ij
plsij �

�0

�0n	

sijC�s̃̄��T�s̃̄�
sij

s̄
ntot − nij� =

d��nij,ntot�
dt

+ Q .

�5.1�

We will denote sxx=−syy =s, sxy =syx=�, nxx=−nyy =n
,
nxy =nyx=n�, and the invariant of the nij tensor as n̄= �n


2

+n�
2�1/2. The energy � is now a function of three variables, so

d�

dt
=

��

�n


dn


dt
+

��

�n�

dn�

dt
+

��

�ntot

dntot

dt
. �5.2�

As in Sec. II, we suppose that Q=a�0�̄ntot� /�0n	. Writing
�5.1� in components and then assuming that the energy � can
depend on n
 and n� only through n̄, we find

� = 2C�s̃̄�
�ntotT�s̃̄� s

s̄ − n
�� �0

n	
s̃ − ��

�n̄

n


n̄ � + �ntotT�s̃̄� �
s̄ − n��� �0

n	
�̃ − ��

�n̄

n�

n̄ �
a�0�̄

ntot

n	
− n̄ ��

�n̄ + �n	 − ntot�
��

�ntot

. �5.3�

The rate function �=�0Ra must always be positive. In anal-
ogy with Sec. II, considering this expression as a function of
stresses allows us to conclude that the numerator and the
denominator of � must always be positive separately. For
fixed n
 ,n�, and ntot and varying s ,� we want the numerator
to pass through zero at a single point �s0 ,�0� and be positive

elsewhere. The numerator becomes equal to zero when its
first and third brackets are equal to zero. This happens for

stresses s0=n
s̄0 / �ntotT�s̃̄0�� and �0=n�s̄0 / �ntotT�s̃̄0��. Now,
we can express s0 and �0 as functions of the variables n
 ,n�,
and ntot only. Noting that s̄0= �s0

2+�0
2�1/2, we find that s̄0

= �̄T −1�n̄ /ntot�. Substituting s̄0 in the expressions for s0 and
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�0, we get s0= �̄T −1�n̄ /ntot�n
 / n̄, �0= �̄T −1�n̄ /ntot�n� / n̄.
If the second and the fourth brackets also pass through

zero at this point, they will always have the same sign as the
first and the third brackets, correspondingly, ensuring posi-
tiveness of the numerator. Thus, from either the second or the
fourth bracket, we find

��

� n̄
=

�0�̄

n	

T −1� n̄

ntot
� . �5.4�

Therefore, we find that the energy � has the same form as in
Sec. II, Eq. �2.10�

� = �0�̄
ntot

n	
�P� n̄

ntot
� + 
	 . �5.5�

Now, we can write out our final result for the tensorial
generalization of the low-temperature STZ theory of plastic-
ity in the form analogous to Eqs. �2.11�–�2.16�. If again we

denote �=ntot /n	, 
ij =nij /n	, 
̄= n̄ /n	, we get

�0�̇ij
pl = �0C�s̃̄���T�s̃̄�

sij

s̄
− 
ij� , �5.6�

�0
̇ij = 2C�s̃̄���T�s̃̄�
sij

s̄
− 
ij� − �
ij , �5.7�

�0�̇ = ��1 − �� , �5.8�

� =
C�s̃̄���T�s̃̄�sij/s̄ − 
ij��s̃ij − T −1�
̄/��
ij/
̄�

M��,
̄�
. �5.9�

Expressions M�� , 
̄� and ��� , 
̄�=� /�0�̄ are the same as

�2.16� and �2.15�, with 
 replaced everywhere by 
̄.
Finally, we can compare our tensorial theory with arbi-

trary spatial orientations of STZs and arbitrary loading, de-
rived in this section, with the limited STZ theory of Sec. II
for STZs oriented only along two preferred axes and pure
shear loading. If we consider pure shear in the generalized
STZ theory of this section, we must assume that the principal
axes of tensors sij and 
ij are the same. Thus, for pure shear
Eqs. �5.6�–�5.8� become the same as Eqs. �2.11�–�2.13�.
Therefore, the results of Sec. II hold for the STZ theory
generalized here. We also note that in the discussion of Sec.
II an important role was played by the saturation point—the
value of m for which no further transitions were possible. In
the isotropic case, when all STZs are switched in one direc-
tion, that is, when ���


�=�tot, we can find from the expres-
sions for ntot and nij of Sec. IV that n̄=ntot. For other orien-
tational distributions, when ���


���tot, at least in some
interval of angles, we have m= n̄ /ntot�1. However, the pro-
jection of the stress tensor on the directions in the narrow
strips under angles ±� /4 to the principal axes of the stress

tensor is small, for any finite value of s̃̄, leading to ���

�

��tot at least for those angles. Therefore, we must expect
that the saturation point will be reached at m= n̄ /ntot�1, as
has been assumed in Sec. III B.

VI. CONTINUUM EQUATIONS AND ENERGY BALANCE

The plasticity described by the STZ theory can be incor-
porated into a continuum theory that describes elastic and
plastic behavior of viscoelastic solids using a general frame-
work, discussed, for example, in Refs. �20,21�.

A. The STZ theory of plasticity in a spatially inhomogeneous
situation

We start with the generalization of the isotropic STZ
model of plasticity for a spatially inhomogeneous situation.

To make the physical picture clear, we will now discuss
details omitted for simplicity in the previous sections. Let us
consider a small region of material, much smaller than the
size of the sample, but much larger than individual atoms
and interatomic distances. This region contains many STZs
of all possible orientations, but from a macroscopic point of
view it is infinitesimally small and is identified by its coor-
dinates only. Thus, we are on a mesoscopic scale.

As this region contains many STZs, we consider the av-
erage effect of transitions between their states �which are
changes in the positions of atoms on the microscopic level�
on this region as a small part of the sample. From this point
of view the transition between the states of an STZ gives rise
to a change of strain at the point where this region is.

Further, we will describe the material by what is called
the referential description �20�. Namely, suppose that we are
sitting in the material coordinate system and then at some
time t we freeze our frame of reference and describe the
evolution of the material during an infinitesimally small time
interval in this frozen frame of reference. We can see that the
discussion of Sec. IV is correct even for an inhomogeneous
situation in the material frame of reference, when the coor-
dinate system not only moves with the particular small re-
gion of material, but also rotates with it. In the referential
frame of reference we must exclude the effect of transla-
tional and rotational motion to make sure that we consider
the same region of material under the same angle.

Thus, instead of the time derivative of angle-dependent
quantities ��

± ,��

 ,��

tot, the dot in the expressions �4.2� and
�4.3�, and later must denote a complete corotational deriva-
tive

�̇� �
���

�t
+ vi

���

�xi
+ �

���

��
, �6.1�

where vi and � are the translational velocity and the angular
speed of our region. When deriving Eq. �4.9� the integral

−�/4

�/4 dij
��̇�


d� gives the tensorial corotational derivative

Dnij

Dt
�

�nij

�t
+ vk

�nij

�xk
+ nikwkj − wiknkj , �6.2�

where wij =1/2��vi /�xj −�v j /�xi� denotes the spin tensor.
This corotational derivative must be used in place of ṅij in
�4.9� and further. Correspondingly, instead of the time de-
rivative ṅtot in the expression �4.12� we get the total deriva-
tive
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dntot

dt
=

�ntot

�t
+ vi

�ntot

�xi
, �6.3�

as the rotational part integrates out. Finally, in the referential
frame of reference the time derivative of the small strain
tensor �̇ij

pl is equal to the rate of deformation tensor Dij
pl.

Considering the above, the system �4.10�–�4.12� becomes:

�0Dij
pl = �0f���0/��C�s̃̄��T�s̃̄�

sij

s̄
ntot − nij� , �6.4�

�0

Dnij

Dt
= 2C�s̃̄��T�s̃̄�

sij

s̄
ntot − nij� − �nij , �6.5�

�0
dntot

dt
= ��n	 − ntot� . �6.6�

In �6.4� we took into account that the elementary strain,
which is due to a transition between STZ states, can depend
on the local density of material � ��0 denotes some reference
density�. We will discuss this point later.

B. Continuum theory of elasto-plastic deformation

Here, we write out a complete set of equations needed to
describe arbitrary elasto-plastic deformation of material. We
also make an effort to demonstrate the energy balance prop-
erties of our system of equations. This question is certainly
not new for a system with constitutive relations in the rate
form. However, we consider it important to show how plas-
ticity described by the STZ theory can be incorporated into
such a framework.

First, we need to assert that our set of equations contains
general equations which are true for any material—the con-
servation of mass and momentum balance equations

d�

dt
+ �

�vi

�xi
= 0, �6.7�

�ai =
��ij

�xj
, �6.8�

where ai is the acceleration of material points, which in an
inertial coordinate system is equal to dvi /dt, and �ij is the
true stress.

We describe the material properties by a set of constitu-
tive equations, which also includes equations for internal
variables. To describe a viscoelastic solid, we additively de-
compose the total strain rate tensor Dij

tot=1/2��vi /�xj

+�v j /�xi� as the sum of elastic and plastic parts, which is
true under the assumption that elastic strain is small

Dij
tot = Dij

el + Dij
pl. �6.9�

We would like to describe elastic behavior of the material
simply by Hooke’s law, but since here we are dealing with
large deformations of solids and our equations are in the rate
form, we need to take into account at least to some extent the
dependence of the elastic properties of the material on its
density. As we will see, this is dictated by the conservation of

elastic energy. It is convenient to postulate that the equation
of state of the material is defined by a function FK

p = − KfK��0/��FK��0/�� , �6.10�

such that fK�x�=F�K�x�, FK�1�=0, fK�1�=1. In the above
equation p is the true pressure and �0 is the reference density
of the material, which is convenient �but not necessary for
further discussion� to assume to be the density of the mate-
rial at zero pressure. The spherical part of the elastic re-
sponse is fully described by this equation and, in fact, K here
is the bulk modulus. Now, we can introduce the conjugate
stress and strain measures �the strain measure is given im-
plicitly, by defining only the rate of deformation�

p̃ = p/fK��0/��; D̃ii = DiifK��0/���0/� . �6.11�

Then, according to �6.9� and �6.7�, we can write the rate form
of Hooke’s law as

D̃ii
el = −

1

K

dp̃

dt
, �6.12�

which coincides with the usual form in the case of small
deformations. Similarly, for the deviatoric part of elastic re-
sponse, we have

�D̃ij
el�dev =

1

2�

D�̃ij
dev

Dt
, �6.13�

where the conjugate stress and strain measures are

�̃ij
dev = �ij

dev/f���0/��; �D̃ij
el�dev = �Dij

el�devf���0/���0/� .

�6.14�

The conservation of mass equation �6.7�, the momentum bal-
ance equation �6.8�, the constitutive equations �6.4�, �6.9�,
and �6.13�, the equation of state �6.10�, and the equations for
dynamics of internal variables �6.5� and �6.6� constitute a full
system of equations which describes elasto-plastic behavior
of a material. Those equations possess the property of frame
indifference �20–22�. In particular, we used this system in a
simplified form for simulations of necking �5�.

The energy balance equation can be derived from the mo-
mentum balance equation. This derivation is very well
known for the balance of energy in a volume fixed in space,
but is less known for the case we are interested in here, when
the balance of energy is considered in the volume of mate-
rial. By multiplying Eq. �6.8� by vi and integrating over some
arbitrary material volume V, we get

�
�V�
��

d

dt

vi
2

2
+

�

�0

d

dt

p̃2

2K
+

�

�0

d

dt

��̃ij
dev�2

4�
+ Dij

pl�ij�dV

= �
�S�

vi�ijdSj . �6.15�

The factor � /�0 in front of the total derivative plays an
important role. Without it we would not be able to move
differentiation over time in front of the integral. But, as � /�0
is the Jacobian of the transformation from the coordinate
system xi�t� to the reference state xi�0�, we can first change
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the variable of integration to xi�0�, then put the time deriva-
tive in front of the integral �instead of a total derivative we
will only be left with a derivative over time�, and finally we
can change variables of integration back to xi�t�. This is a
purely mathematical procedure. It can be physically inter-
preted in the following way: instead of integrating over the
time-varying volume dV, we integrate over the conserved
mass �dV. We get

d

dt
�

�V�
�1

2
�vi

2 +
�

�0

p̃2

2K
+

�

�0

��̃ij
dev�2

4�
+

�

�0
��dV

= �
�S�

vi�ijdSj − �
�V�

�

�0
QdV . �6.16�

Above, we also supposed that the plastic work can be ex-
pressed as

Dij
pl�ij =

�

�0
�d��nij,ntot�

dt
+ Q� . �6.17�

Equation �6.16� shows that energy in a particular volume of
material consists of kinetic, elastic, and plastic parts. It is
changed by the work of external forces, and it also dissipates
due to plastic processes.

An important example relevant to above discussion is the
Kirchhoff stress tensor �̃ij =�ij�0 /�, which is often used in
engineering applications �23� and standard engineering soft-
ware �24�. This stress tensor is conjugate to the rate of de-
formation tensor Dij �25�. We get such a formulation if we
set FK�x�=ln x, fK=1/x, f�=1/x. This formulation assumes
the following equation of state: p=K�� /�0�ln � /�0.

Now, we return to the assumption �6.17�. For this equa-
tion to be valid, the plastic rate of deformation tensor must
be dependent on the density of material. This dependency
has already been explicitly introduced in �6.4�. At this point
it is convenient to generalize our description of plasticity and
also take into account the possible dependence of transition
rates on the local density of material, which we include in
the definition of the stress tensor sij

sij = �ij
devf���0/���0/� . �6.18�

Then, the density of the rate of plastic work Dij
pl�ij can be

expressed as a product of � /�0 and a function of sij ,nij ,ntot,
but not density. Equation �6.17� then follows; we used it in
the form �5.1� in connection with our hypothesis of propor-
tionality of the annihilation and creation rates to the dissipa-
tion rate.

VII. DISCUSSION

Now that we have postulated that the rates of STZ cre-
ations and annihilations are proportional to the rate of energy
dissipation, and shown how to derive dynamical equations,
we will proceed with discussing physical mechanisms that

can underlie this hypothesis, and possible directions to fur-
ther develop the STZ theory.

The real microscopic picture of plastic deformation is far
more complicated than what we describe in our model,
where the properties of material are determined by the be-
havior of STZs only. At present, we can definitely tell that an
STZ exists only by observing localized atomic
rearrangements—transitions from one STZ state to the other.
But, in principle, an STZ is a site where transition is poten-
tially possible. An insight about how to identify these sites
has been provided by Egami et al. �10� and Srolovitz et al.
�11,12�, who proposed that these are sites with anomalously
high levels of atomic deviatoric stress, which they called “�
defects.” More work, however, is needed in this direction to
specify the precise conditions determining the existence of
an STZ, and the moments when it appears or disappears.

Currently, it is much easier to understand the energetic
properties related to a transition that already happened.
When atoms in an STZ rearrange, an additional “back stress”
field is created around the place of rearrangement. It is in this
field that the plastic energy � is stored, and this energy is in
principle recoverable during a reverse transition.

However, how do we understand the energetic processes
related to the elusive events of STZ creations and annihila-
tions? Annihilations are easy to imagine as impossibility of
reverse transition after the initial transition or a series of
transitions. In the language of microscopic stresses this may
mean too small of a back stress field or its disappearance due
to other transitions. In this case we can say that the STZ has
annihilated and the energy stored in it has dissipated. Hence,
we can see a direct connection between the dissipated energy
and annihilation.

Let us look further. Any transition at low temperatures is
a transition from a higher energy state to a lower energy
state. This transition and creation of the stress field around
the STZ is accompanied by dissipation of energy equal to the
difference between the energy levels. This difference, before
being absorbed by thermostat, can cause significant local in-
crease of kinetic energy and additional atomic rearrange-
ments which, along with transitions of other STZs, can lead
to creations of new STZs and annihilations of existing ones.
Thus, the energy dissipation is again related to creations and
annihilations.

Another important problem is to consider other essential
degrees of freedom describing the structure of material. As
we mentioned earlier, n	 can be especially sensitive to them.
In a theory for elevated temperatures, it is the increasing
temperature dependence of n	 that gives calorimetric char-
acteristics of glass transition. An interesting way to introduce
a variable describing disorder in the structure of material was
offered in Ref. �26�, where n	 was assumed to depend on
that new variable instead of directly on the temperature.

In the complex and not yet fully understood picture of the
microscopic mechanisms underlying plastic deformation in
amorphous solids, the conjecture of proportionality offered
in this paper is the simplest of what can be suggested for
STZ creation and annihilation rates, and it can be useful
beyond the current framework of the low-temperature theory.

DYNAMICS OF SHEAR-TRANSFORMATION ZONES IN … PHYSICAL REVIEW E 72, 021507 �2005�

021507-11



ACKNOWLEDGMENTS

This research was primarily supported by U.S. Depart-
ment of Energy Grant No. DE-FG03-99ER45762. I particu-
larly wish to thank Jim Langer for constant attention to this

work and useful comments during preparation of this manu-
script, and Lance Eastgate for many useful suggestions. I
would also like to thank Craig Maloney, Anthony Foglia, and
Anael Lemaitre for helpful discussions.

�1� J. S. Langer and L. Pechenik, Phys. Rev. E 68, 061507 �2003�.
�2� M. L. Falk, J. S. Langer, and L. Pechenik, Phys. Rev. E 70,

011507 �2004�.
�3� H. Kato, Y. Kawamura, A. Inoue, and H. S. Chen, Appl. Phys.

Lett. 73, 3665 �1998�.
�4� J. Lu, G. Ravichandran, and W. L. Johnson, Acta Mater. 51,

3429 �2003�.
�5� L. O. Eastgate, J. S. Langer, and L. Pechenik, Phys. Rev. Lett.

90, 045506 �2003�.
�6� M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 �1998�.
�7� D. Turnbull and M. Cohen, J. Chem. Phys. 52, 3038 �1970�.
�8� F. Spaepen, Acta Metall. 25, 407 �1977�.
�9� A. S. Argon, Acta Metall. 27, 47 �1979�.

�10� T. Egami, K. Maeda, and V. Vitek, Philos. Mag. A 41, 883
�1980�.

�11� D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Philos. Mag.
A 44, 847 �1981�.

�12� D. Srolovitz, V. Vitek, and T. Egami, Acta Metall. 31, 335
�1983�.

�13� D. Deng, A. S. Argon, and S. Yip, Philos. Trans. R. Soc. Lon-

don, Ser. A 329, 549 �1989�.
�14� O. A. Hasan and M. C. Boyce, Polymer 34, 5085 �1993�.
�15� M. L. Falk and J. S. Langer, MRS Bull. 25, 40 �2000�.
�16� M. L. Falk, Ph.D. thesis, University of California, Santa Bar-

bara �1998�.
�17� J. S. Langer, Phys. Rev. E 62, 1351 �2000�.
�18� J. S. Langer, Phys. Rev. E 64, 011504 �2001�.
�19� V. V. Bulatov and A. S. Argon, Modell. Simul. Mater. Sci.

Eng. 2, 1674 �1994�.
�20� L. E. Malvern, Introduction to the Mechanics of a Continuous

Medium �Prentice-Hall, Englewood Cliffs, NJ, 1969�.
�21� J. Lubliner, Plasticity Theory �Macmillan, New York, 1990�.
�22� J. G. Oldbroyd, Proc. R. Soc. London, Ser. A 200, 523 �1950�.
�23� R. M. McMeeking and J. R. Rice, Int. J. Solids Struct. 11, 601

�1975�.
�24� ABAQUS Theory Manual �Hibbit, Karlsson & Sorensen, Inc.,

1998�.
�25� R. Hill, J. Mech. Phys. Solids 7, 209 �1959�.
�26� J. S. Langer, Phys. Rev. E 70, 041502 �2004�.

LEONID PECHENIK PHYSICAL REVIEW E 72, 021507 �2005�

021507-12


